当前位置:首页 > 外文
INTRODUCTION TO ROBOTICS
INTRODUCTION TO ROBOTICS

INTRODUCTION TO ROBOTICSPDF电子书下载

外文

  • 电子书积分:15 积分如何计算积分?
  • 作 者:ARTHUR J.CRITCHLOW
  • 出 版 社:
  • 出版年份:2222
  • ISBN:0023255900
  • 页数:491 页
图书介绍:
《INTRODUCTION TO ROBOTICS》目录
标签:

Chapter 1 Overview 1

1.1 Historical Perspective 1

1.1.1 Early Automata 1

1.Bird Organ 1

2.Automated Flute Player 3

3.Maillardet’s Automaton 3

1.1.2 Robots and Robotics 5

1.1.3 Robot Relatives 5

1.Manipulators 5

2.Teleoperators 7

3.Exoskeletons 7

4.Prostheses and Orthoses 8

1.2 Definitions and Classifications of Robots 8

1.2.1 By Type of Control 9

1.Point-to-Point Robots 9

2.Continuous-Path Robots 9

3.Controlled-Path (Computed Trajectory) Robots 9

4.Servo versus Nonservo Robots 9

1.2.2 By Capability Level 9

1.Sequence-Controlled Machines 9

2.Playback Machines 10

3.Controlled-Path (Computed Trajectory) Robots 10

4.Adaptive Robots 10

5.Intelligent Robots 10

1.2.3 By Configuration 10

1.Cartesian Coordinates 10

2.Cylindrical Coordinates 11

3.Polar Coordinates 11

4.Revolute Coordinates 11

1.2.4 Mobile versus Fixed Robots 12

1.Fixed Robots on a Pedestal Base 12

2.Fixed Robots Supported from Above 12

3.Fixed Robots on a Track 12

4.Fixed Robots on an Overhead Gantry 13

5.Mobile——Wheeled Vehicle 13

6.Mobile——Tracked Vehicle 13

7.Mobile——with Four to Six Legs 14

8.Mobile——with Two Legs 14

1.3 Why Are Robots Used? 15

1.3.1 Reduced Production Cost 15

1.3.2 Increased Productivity 16

1.3.3 Improved Product Quality 16

1.3.4 Operation in Hazardous and Hostile Environments 16

1.3.5 Improved Management Control 16

1.3.6 Integrated Systems 16

1.3.7 Meeting OSHAs Standards 17

1.3.8 Decreased Reaction and Debugging Time 17

1.3.9 Longer Useful Life 17

1.4 Applications of Robots by Type 17

1.4.1 Sequence——Controlled Machines 17

1.4.2 Playback Machines 17

1.4.3 Adaptive Robots 18

1.Assembly of Small Products 18

2.Inspection Appliances 18

3.Adaptive Welding 19

1.4.4 Intelligent Robots 19

1.5 Components of a Robot 19

1.5.1 Links and Joints 19

1.5.2 Wrist 20

1.5.3 End Effectors 20

1.5.4 Drives and Drive Mechanisms 20

1.5.5 Controls 21

1.5.6 Sensors 21

1.5.7 Interfaces 22

1.6 Robot Systems 22

1.6.1 What Is a System? 22

1.6.2 System Goals and Requirements 22

1.Application Environment 23

2.Range of Motion Required 23

3.Speed Required 23

4.Type of Control Required 23

5.Sensory Requirements 23

6.Interaction with Other Equipment 23

7.Production Quantities Required 23

1.6.3 Classification of Robot Systems 24

1.Simple System 24

2.Complex System 24

3.Integrated System 25

1.7 Present Status 26

1.7.1 Markets 27

1.7.2 Manufacturers——Share of the Market 27

1.7.3 Breakdown of Robots by Application 29

1.8 Future Trends 29

1.8.1 Social, Political, and Economic Factors 29

1.Effect on Employment 30

2.Worker Reaction 30

3.Political and Economic Factors 31

1.8.2 New Applications 31

1.Australian Sheep Shearing 31

2.Agricultural Applications 32

3.Household and Hobby Robots 32

4.Other Applications 33

1.8.3 Long-Range Goals 34

1.Integrated Systems 34

2.Intelligent Systems 34

3.Self-Reproducing Systems 34

Exercises 34

References 35

Chapter 2 Early Development of the Modern Robot 37

2.1 Development Timetable 37

2.2 Industrial Development 38

2.2.1 Unimation Corporation 39

2.2.2 Versatran Corporation 41

2.2.3 Other Industrial Developments in the United States 44

1.Cincinnati Milacron 44

2.2.4 Foreign Industrial Developments 45

1.ASEA 45

2.TRALLFA 45

3.Japanese Industrial Robots 45

2.3 Techical Development 46

2.3.1 Stanford Research Institute (SRI) 46

1.SRI Intelligent Automaton Program 46

2.Industrial Robot with Vision 48

2.3.2 Stanford University 48

2.3.3 Massachusetts Institute of Technology (MIT) 49

2.3.4 Other Early Developments 50

2.3.5 U.S.Government 51

1.Financial Support 51

2.Technical Guidance and In-House Research 51

2.3.6 Japanese Research 51

Exercises 53

References 54

Chapter 3 Mechanical Considerations 57

3.1 Physical Configurations 58

3.1.1 Coordinate Systems 58

3.1.2 Work Envelopes 59

1.Rectangular Coordinate Robots 59

2.Cylindrical Coordinate Robots 60

3.Spherical (Polar) Coordinate Robots 60

4.Revolute (Jointed) Coordinate Robots 60

3.2 Robot Motions 63

3.2.1 Degrees of Freedom 63

3.2.2 Arm and Body Motions 63

3.2.3 Wrist Motions 63

3.3 Drive Mechanisms 63

3.3.1 Linear Drives 63

1.Rack and Pinion 63

2.Lead Screw 64

3.Ball Screws 64

4.Hydraulic Cylinder Drives 64

5.Pneumatic Cylinder Drives 65

3.3.2 Rotary Drives 65

1.Gear Trains 65

2.Timing Belt Drives 67

3.Harmonic Drives 67

4.Rotary Hydraulic Motors 69

5.Direct-Drive Torque Motors 69

3.3.3 Wrist Mechanisms 71

3.3.4 Linear versus Rotary Drives 71

3.3.5 Brakes 71

3.4 End Effectors 72

3.4.1 Grasping and Holdihg Techniques 72

3.4.2 Qualifications for End Effectors 72

1.Grippers 72

2.Friction Holding 73

3.Vacuum Handling 74

4.Specialized End-of-Arm Tooling 75

3.5 Determining Specifications 75

3.5.1 Definitions of Mechanical Terms 76

3.5.2 Design Considerations 77

1.Operating Cycle 77

2.Accuracy and Repeatability 77

3.Life Expectancy, Reliability, and Maintainability 78

3.5.3 Mechanical Positioning Accuracy and Repeatability Factors 78

1.Gravitational Effects 78

2.Acceleration Effects 79

3.Backlash Error 80

4.Thermal Effects 80

5.Bearing Play 81

6.Windup 81

3.6 Mobiiity 81

3.6.1 Unimation-Stanford Mobile Vehicle Project 82

3.6.2 Moravec’s CMU Rover 83

3.6.3 The TO-ROVER 84

Exercises 85

References 86

Chapter 4 Drive Methods 88

4.1 Hydraulic Drives 88

4.1.1 Linear Drive Cylinders 89

4.1.2 Rotary Actuators 90

4.1.3 Electrohydraulic Control Valves 90

1.Flapper Servo Valve 90

2.Jet Pipe Servo Valve 91

4.1.4 Closed-Loop Servos 91

4.1.5 Training a Hydraulic Robot 92

4.1.6 Hydraulic Power Sources 93

4.1.7 Advantages and Disadvantages of Hydraulic Drive 93

4.2 Pneumatic Drives 93

4.3 DC Electric Motors 95

4.3.1 Types of DC Electric Motors 95

1.Iron-Core PM DC Motors 96

2.Surface-Wound PM DC Motors 96

3.Moving-Coil PM DC Motors 96

4.3.2 DC Motor Analysis and Modeling 97

4.3.3 Open-Loop Torque Control with Current Amplifier 99

4.3.4 Open-Loop Torque Control with Voltage Amplifier 99

4.3.5 Closed-Loop Torque Control 99

4.3.6 DC Power Sources and Power Amplifiers 99

1.Rectification 100

2.Regulation 100

3.Power Amplifiers and Switching Circuits 101

4.3.7 Solid-State Switching Devices 102

4.4 Electric Stpper Motors 103

4.4.1 Stepper Motor Operation 103

4.4.2 Types of Stepper Motors 107

4.4.3 Open-Loop Control 108

4.4.4 Crosed-Loop Control 108

4.4.5 Specialized Control Electronics for Stepper Motors 108

4.5 Selection of Drive Methods for Different Applications 109

4.5.1 Hydraulic Versus Electric Drives 109

4.5.2 Comparison of Electric DC Motors and Electric Stepper Motors 110

4.5.3 Pneumatic Drives for Lowest Cost 111

4.5.4 Drive Selection Calculations 111

Exercises 112

References 113

Chapter 5 Sensors for Robots 115

5.1 Sensory Needs of Robots 116

5.1.1 Robot Control and Self-Protection 116

5.1.2 Programmable Automation 117

5.1.3 Manipulation of Workpieces 117

5.1.4 Collision Avoidance 117

5.1.5 Assembly Operations 117

5.1.6 Inspection 118

5.1.7 Search and Recognition 118

5.1.8 User Safety 118

5.2 Sensor Evaluation and Selection 118

5.2.1 Contact versus Noncontact Sensors 119

5.2.2 Evaluation Criteria for Sensors 119

1.Sensitivity 119

2.Linearity 119

3.Range 119

4.Response Time 119

5.Accuracy 120

6.Repeatability 120

7.Resolution 120

8.Type of Output 120

5.2.3 Physical Characteristics 120

1.Size and Weight 120

2.Reliability 120

3.Interfacing 121

5.3 Available Sensory Techiques 121

5.3.1 Contact Sensing 121

1.Switches 121

2.Piezoelectric Transducers 121

5.3.2 Position and Displacement Sensing 122

1.Potentiometers 122

2.Linear Variable Differential Transformers (LVDTs) 123

3.Resolvers 125

4.Absolute Optical Encoders 125

5.Incremental Optical Encoders 127

5.3.3 Force Sensing 128

1.Elastic Elements 128

Simple Elastic Elements——Springs and Bars 128

Cantilever Beams 129

Micromechanical Accelerometers 129

2.Strain Gages 130

Gage Factor 130

Application of Strain Gages 131

Temperature Compensation 131

Multidirectional Strain Gages——Rosettes 132

5.3.4 Torque Sensing 132

5.3.5 Force-Torque Sensing Systems 133

5.3.6 Proximity Sensing 135

1.Optical Proximity Sensor 135

2.Eddy Current 135

3.Ultrasonic Echo Ranging 136

4.Magnetic Sensors 137

5.Capacitive Sensors 138

5.3.7 Touch Sensing and Taction 138

1.Instrumented Remote Center Compliance Sensor (IRCC) 138

2.Tactile Sensor Arrays 141

3.Very-Large-Scale Integration (VLSI) Computing Array 143

5.4 Conditloning Sensor Output 145

5.4.1 Conversion 145

1.Operational Amplifiers 146

5.4.2 Calibration 146

5.4.3 Linearizing 146

5.4.4 Amplifying, Comparing, and Buffering 147

5.4.5 Demodulation 147

5.5 Analyzing Sensor Data 147

5.5.1 Analysis Programs 147

5.5.2 Verification 148

5.6 Sensors for Special Appllcations 148

5.7 Future Work 148

5.8 Key Terms 148

Exercises 148

References 149

Chapter 6 Controls and Control Methods 151

6.1 Classilication of Robots by Control Method 151

6.1.1 Nonservo Robots 151

1.Bang-Bang Controlled Robots 151

2.Sequence-Controlled Robots 151

6.1.2 Servo-Controlled Robots 152

1.Point-to-Point Operation 152

2.Continuous-Path Operation 152

3.Categories of Servo System Operation 153

6.2 Control of Servo Robots 153

6.2.1 Point-to-Point Control 153

1.Potentiometer Control 154

2.Point-to-Point Control Using Computer Memory 154

Analog-to-Digital Conversion 155

Memory Size Required 156

Digital-to-Analog Conversion 156

6.2.2 Teaching and Pendant Control (Teach-boxes) 156

6.2.3 Continuous Path 157

1.Path Types 157

Standard Servo Control 157

Feedforward or Look-Ahead Control 158

Controlled-Trajectory Control 158

2.Teaching of a Continuous Path 158

3.Programming 158

6.3 Advanced Control Methods 158

6.3.1 Controlled Trajectory 159

1.Lagrange-Euler Formulation 160

2.Newton-Euler Formulation 160

6.3.2 Obstacle Avoidance 161

6.3.3 Adaptive Operation 164

6.3.4 Intelligent Robots 165

6.4 Closed-Loop Servos 165

6.4.1 Nomenclature and Symbols (ANSI Standard) 166

6.4.2 Block Diagram Representation 167

1.Cascaded Blocks 167

2.Parallel Blocks 168

3.Feedback Loops 168

6.4.3 Laplace Transforms——Frequency Domain 168

1.Unit Step Function U(s) 170

2.Application of the Laplace Transform 170

6.4.4 System Modeling 170

6.4.5 Servo Analysis Methods 176

6.5 Servo System Component 176

6.5.1 Inputs 176

6.5.2 Summing Circuits 177

6.5.3 Control Elements 177

6.5.4 Power Amplifiers 177

6.5.5 Drive Motors 178

6.5.6 Position Sensors 178

6.5.7 Conditioning Circuits 178

6.5.8 Feedback Circuits 178

6.5.9 Velocity Sensors 178

6.6 Kinematlcs Analysls and Control 178

6.6.1 Homogeneous Transformations 179

1.Rotation Transformations 181

2.Translation 184

3.Interpreting the Homogeneous Matrix 186

6.6.2 Coordinate Transformation 188

1.Joint-to-World Transformations 189

2.Coordinate Frame Parameters 189

6.6.3 Control Methods 194

1.Resolved Motion Rate Control 195

2.Cerebellar Model Articulation Control 195

3.Computed Torque or Inverse Problem 195

4.Resolved Acceleration Control 196

5.Modular Reference Adaptive Control 196

6.Compliant Motion Control 196

6.7 Controller Design Example 197

6.7.1 Cartesian and Joint Coordinates 197

6.7.2 Positional Control of a Single Joint 199

1.Single-Joint Controller 200

2.Determination of the Gain Constants 206

3.Steady-State Error for Joint Controller 206

6.7.3 Conveyor Following with a Single-Joint Controller 207

1.Velocity Error and Compensation 207

2.Compensation for the Centrifugal Term 207

3.Acceleration Error and Compensation 208

4.Effect of Feedforward Compensation 208

6.7.4 Controller for a Robot with Multiple Joints 208

1.Lagrangian Formulation of Dynamic Equations 208

6.7.5 Path Tracking by a Robot with Multiple Joints 209

6.7.6 Effect of Feedforward Compensation on a Multiple-Joint Robot 209

6.7.7 Conclusion 210

Exercises 210

References 211

Chapter 7 Computer Hardware for Robot Systems 214

7.1 Hardware Needs for Robot Systems 214

7.1.1 System Supervision 214

7.1.2 Trajectory Calculation and Control 215

7.1.3 Vision 215

7.1.4 Sensor Monitoring 215

7.1.5 Safety Monitoring 215

7.1.6 Input/Output 215

7.2 Logic Clrcuits and Computer Elements 216

7.2.1 Logic Circuits (Logic Gates) 216

1.AND Circuit 216

2.OR Circuit 217

3.NOT Circuit (Inverter) 217

4.NAND Circuit 218

5.NOR Circuit 218

6.Exclusive-OR (XOR) Circuit 218

7.Three-State Switches 219

7.2.2 Boolean Algebra 219

7.2.3 Flipflops 220

7.2.4 Decoders 222

7.2.5 Multiplexers 223

7.2.6 Counters 224

7.2.7 Registers 224

1.Storage Registers 225

2.Shift Registers 225

7.3 Computer System Organization 225

7.3.1 Organization of the Central Processing Unit (CPU) 226

1.Architecture of the Intel 8080 226

2.Fetch and Execution Instructions 229

3.Instruction Execution 230

7.3.2 Arithmetic and Logic Units (ALU) 232

1.Binary Addition 232

2.Arithmetic and Logic Operations 233

7.3.3 Control Unit 235

7.3.4 Memories 235

7.3.5 Bus Standards 237

1.S-100 Bus (IEEE 696 Bus) 237

2.Multibus (IEEE 796) 239

3.Versabus 241

4.IEEE 488 Bus (GPIB Bus) 241

5.Other Buses 242

7.4 Peripheral Equipment 242

7.4.1 Data Storage Devices 242

1.Magnetic Disks 243

2.Magnetic Tapes 245

7.4.2 Printers 245

1.Dot Matrix Serial Printers 246

2.Daisy Wheel Serial Printers 247

3.Nonimpact Serial Printers 248

4.Line Printers——Impact Type 248

Drum Printers 248

Chain Printers 249

5.Line Printers-Nonimpact Type 249

7.4.3 Visual Display Terminals 249

7.4.4 Vision 250

7.4.5 Sensors 250

7.4.6 Robot Servos 251

7.4.7 Auxiliary Equipment 251

7.5Input/Output Operatlons and Control 253

7.5.1 Device Addressing 253

7.5.2 Interfacing and Interface Standards 253

1.RS-232 Interface 253

2.Parallel-to-Serial and Serial-to Parallel Conversion 255

3.Parity 256

4.Handshaking Signals 258

7.5.3 Interrupts and Interrupt Handling 258

1.Vectored Priority Interrupt 261

7.5.4 Direct Memory Access (DMA) 261

7.6 Advanced Computer Systems 262

7.6.1 Improved Microprocessors 263

7.6.2 Advanced System Organization 267

7.6.3 Networks 269

Exercises 270

References 272

Chapter 8 Robot Software 274

8.1 Robot Software Requirements 274

8.1.1 Need for Programming and Control 274

8.1.2 Monitors and Operating Systems 275

1.Monitors 276

2.Operating Systems 276

8.1.3 Assembly Languages and Higher-Level Languages (HLLs) 276

8.1.4 Compilers and Interpreters 278

8.1.5 Types of Users 278

8.1.6 Definitions of Terms 279

8.2 Levels of Programming 281

8.2.1 Sequence Control 281

8.2.2 Teach-by-Guiding (or Teach-by-Showing) 281

8.2.3 Teach by Teach Box 281

8.2.4 Off-Line Programming or Preprogramming——Single Robot Arm 282

8.2.5 Programming——Integrated System 282

8.2.6 Adaptive Systems 283

8.2.7 Intelligence Systems 283

8.3 Functions Performed by Programming 283

8.3.1 Motion Control 284

1.Types of Motion 284

2.Trajectory Planning 285

3.Velocity and Acceleration Control 285

4.Force and Torque Control 285

5.End Effector Control 286

6.Obstacle Avoidance 286

7.Motion Coordination 286

8.3.2 Adaptive Control Using Sensory Information 287

1.Initiating and Terminating Actions 287

2.Choosing Among Alternative Actions 287

3.Determining the Identity and Position of Objects 288

4.Constraint Compliance 288

8.3.3 System Supervision and Control 289

1.Supervision of Motion Control and Adaptive Control 290

2.Interfacing with External Devices 290

3.Coordination Functions 290

4.Data Processing and Storage 290

8.3.4 Intelligent Activities (Artificial Intelligence) 291

1.Knowledge Representation 291

2.World Modeling 291

3.Task Specification 292

4.Decision Making 292

8.4 Present Robot Languagues——Features and Problems 293

8.4.1 Evolution of Robot Languages 293

1.MHI (1960-1961) 294

2.WAVE (1970-1975) 294

3.AL 294

4.POINTY 295

5.VAL (1975-Present) 295

6.AML (1977-Present) 296

7.PASCAL 297

8.PAL 297

9.MCL (1978-Present) 298

10.RAIL 299

11.HELP 299

12.JARS 299

13.RPL 299

14.ADA 300

8.4.2 Language Evaluation Criteria 300

1.Available Control Structures 300

2.Multiple Tasking Capability 300

3.Rotation, Translation, and Vector Specifications 301

4.Motion Control 301

5.Software Engineering Features 301

8.5 Programming Examples for Existing Languages 301

8.5.1 VAL 302

1.Types of Arguments Used 302

2.Trajectory Control Methods 305

8.5.2 The AL System at the Stanford Artificial Intelligence Laboratory (SAIL) 307

1.Design Philosophy of AL 307

2.AL System Hardware 309

3.Current AL Software Organization 311

8.5.3 IBM’s AML Language 312

1.AML System Software 312

2.AML 316

3.Commands in AML 317

4.Examples of AML Application 319

Exercises 322

References 322

Chapter 9 Robot Vision 325

9.1 Capturing the Image 326

9.1.1 Scanning a Scene 326

9.1.2 Standard Television Scanning——RS-170 Standard 327

9.1.3 Electronic Scanners: Vidicon and Orthicon 328

9.1.4 Solid-State Camera 328

1.Charge-Coupled Devices (CCDs) 328

2.Charge-Injection Devices (CIDs) 329

3.Area Camera Systems 329

9.1.5 Scanning Laser Camera 332

9.1.6 Linear Arrays 332

9.1.7 Random Access Devices 332

9.1.8 Obtaining Depth and Range Information (in Three Dimensions) 332

1.Specialized Lighting (Structured or Contrived) 333

2.Projection Patterns 334

3.Alternative Ranging Methods 335

4.Time-of-Flight Range Finders 336

9.2 Frame Grabbers 336

9.2.1 Flash Digitizers 336

1.Analog-to-Digital Converters 337

9.3 Vision Processors 338

9.3.1 Microprocessors for Vision Systems 339

9.3.2 Multiple Processors and Special-Purpose Systems 340

1.Parallel Image Processing 340

2.Architecture of the Massively Parallel Processor (MPP) 342

9.3.3 Vision Processors in Japan 342

9.3.4 Special-Purpose Hardware 343

1.Real-Time Digital Image Enhancement 343

9.4 Image Storage and Retrieval 344

9.4.1 High-Speed Memory 344

9.4.2 Disk Files 345

9.4.3 Magnetic Bubble Memories 345

9.5 Picture Representation 345

9.5.1 Digitization 345

9.5.2 Image Compression 346

1.Differencing 347

9.5.3 Memory and Special Considerations 348

9.6 Preprocessing 349

9.6.1 Local Transformation 349

9.6.2 Global Transformation 350

1.Histogram Equalization 350

2.Fourier Transform 352

9.6.3 Noise Removal 353

9.7 Edge Detection 354

9.7.1 Edges and Lines 354

9.7.2 Local Edge Elements 355

9.7.3 Boundary Tracking (Segmenting) 358

9.8 Recognizing Objects 359

9.8.1 Template Matching 359

9.8.2 The Hough Transform 360

1.Application of the Hough Transform 361

9.8.3 Syntactic Methods 363

9.8.4 Feature Recognition Methods 363

1.Image Parameter Measurements 364

2.Local Feature Focus System 367

9.9 Scene Understanding 367

9.9.1 Knowledge Representation 368

9.9.2 Three-Dimensional Scenes 369

9.9.3 Feedback to the Robot 370

9.10 Interfacing and Control 370

9.11 Examples of Vision Systems 371

9.11.1 SRI Vision Module 371

9.11.2 CONSIGHT——General Motors Vision System 373

Exercises 375

References 376

Chapter 10 Applications of Robots 380

10.1 Machine Loading and Unloading 380

10.1.1 Press Tending 381

10.2 Material Handling 383

10.2.1 Palletizing 384

10.2.2 Packaging 385

10.3 Fabrication 387

10.3.1 Investment Casting 388

10.3.2 Grinding 389

10.3.3 Deburring 389

10.3.4 Fettling 389

10.3.5 Routing 389

10.3.6 Drilling 390

10.3.7 Water Jet Cutting 390

10.3.8 Electrical Wire Harness Manufacture 390

10.3.9 Application of Glues, Sealers, Putty, and Caulking Materials 391

10.4 Spray Painting and Finishing 392

10.4.1 Application Methods 392

10.4.2 Advantages of Robots 393

10.4.3 Robot Characteristics Required 394

10.4.4 Programming of Finishing Robots 396

10.4.5 General Motors Finishing System 396

10.5 Spot Welding 397

10.6 Arc Welding 399

10.6.1 Simple Welding 401

10.6.2 Tactile Seam Following 401

10.6.3 Through-the-Arc Sensing 401

10.6.4 Vision Guidance Systems 402

1.General Electric ——WeldVision System 402

2.Unimation, Inc.——UNIVISION System 402

3.Adaptive Technologies, Inc.——Adaptavision 3-D 402

4.Automatix, Inc.——Robovision Welding System 402

10.6.5 Payoff for a Simple Robotic System 404

10.7 Assembly Applications 404

10.7.1 Electronics Assembly 405

10.7.2 Westinghouse APAS System 407

10.7.3 Robotic Assembly in Italy 410

10.8 Inspection and Test 411

10.8.1 Three-Dimensional Measurement 411

10.8.2 Robot Plus Vision (or Other Sensors) 411

10.8.3 Vision Alone 414

10.9 Auxillary Equipment 414

10.9.1 Conveyors 415

10.9.2 Automatic Guided Vehicles (AGVs) 415

10.9.3 Positioners 415

10.9.4 Feeders 417

10.9.5 Compliant Wrists 417

10.9.6 End Effectors 418

10.9.7 Fences and Safety Shields 419

10.10 Optimizing Robotic Systems 420

10.10.1 Investigation 420

10.10.2 Planning 421

10.10.3 Implementation 421

10.10.4 Evaluation and Improvement 422

10.11 The Future Factory 423

10.12 Management Considerations 427

10.12.1 Economic Justification 427

1.Payback Period 428

Capital Investment 429

Savings 429

Operating Costs 430

Payback Calculation 430

2.Return on Investment 430

3.Discounted Cash Flow (Internal Rate of Return) 431

10.12.2 Improvement of Product Quality 432

10.12.3 Effect on People 432

10.12.4 Compliance with Legal Requirements 433

10.12.5 Efficiency of Operations 433

10.12.6 Flexibility and Growth Potential 433

10.12.7 Effects on Organizational Structure 434

10.12.8 Effects on the Future of the Organization 434

Exercises 435

References 436

Appendix A: Computer Notation and Codes 439

Appendix B: Mathematical Operations 443

Appendix C: Glossary of Robotic Related Terms 449

Index 467

返回顶部